

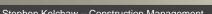
The New Upper Dublin High School

Senior Thesis Final Presentation Stephen Kelchaw Construction Management

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection Analysis IV – Lighting System Analysis
 - Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

Upper Dublin High School Construction Project

Building Overview



- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection Analysis IV – Lighting System Analysis
- Lighting/Electrical Breadth Summary/Conclusions
- Questions

- •Size: 368,000sf
- Location: Fort Washington, PA
- Project Budget: \$119.2 Million
- Pursuing minimum LEED Silver rating



- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth Analysis III – Rainwater Collection
- Analysis IV Lighting System Analysis Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

Building Overview

- •4-year construction timeline (Aug. '08 Aug.'12)
- •2 Phases with multiple sub-phases
- Major Milestones:
 - •December 2009 Gym/Pool Completion
 - •December 2010 Classroom Wing/Phase I Completion
 - •January 2011 Final demolition of existing high school
- •August 2012 Phase II/Final Building Completion

- Building Overview
- Thesis Theme/Goals
- •MAE Requirements
- •Analysis I LEED on Projects
- Analysis II Geothermal Well System
 Mechanical Breadth
- •Analysis III Rainwater Collection
- Analysis IV Lighting System Analysis
 Lighting/Electrical Breadth
- Summary/Conclusions
- •Questions

Thesis Theme/Goals

•Overall Theme:

•Impact of implementing sustainable practices and technologies on construction projects

•Main Goals:

- Look at sustainability from a CM's point of view
- •Study the impact of implementing new/additional technologies with a cost and schedule focus
- •Keep in mind the public, school district, and students
- •Take advantage of this opportunity to look at the impact of sustainability on an actual project

MAE Requirements

- Building Overview
- Thesis Theme/Goals
- Mesis Meme/Goa
- ■MAE Requirements
- Analysis I LEED on Projects
 Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater CollectionAnalysis IV Lighting System Analysis
- Lighting/Electrical Breadth
- Summary/ConclusionsQuestions

- •Graduate Class Incorporation:
 - •AE 597D "Sustainable Building Methods"
 - •AE 572 "Project Development and Delivery Planning"

- Building Overview
- Thesis Theme/Goals
- •MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System

 Mechanical Breadth
- •Analysis III Rainwater Collection
- Analysis IV Lighting System Analysis
 Lighting/Electrical Breadth
- Summary/Conclusions
- •Questions

- Goals:
 - •Study the benefits of pursuing LEED on projects
 - •Determine the impact of LEED on schedule and overall costs
 - •Take a look at how LEED changes the project structure
- -Why did the LIDED Durane LEED
- Why did the UDSD Pursue LEED?
 Project approved by public referendum
 - •Held several town meetings
 - •Public pushed for energy efficiency, a healthier facility, and a building that serves as an educational tool

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- ■Analysis I LEED on Projects
- Analysis II Geothermal Well System
 Mechanical Breadth
- •Analysis III Rainwater Collection
- Analysis IV Lighting System Analysis
 Lighting/Electrical Breadth
- Summary/Conclusions
- •Questions

- Main Points of Contact:
 - Owner
 - Construction Manager
 - •LEED Consultant
- •LEED Checklist and Responsibilities:
 - •LEED for Schools, released in 2007
 - •Integrative Design Process
 - •Increased amount of paperwork
 - •Responsibilities Matrix

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- ■Analysis I LEED on Projects ■ Analysis II – Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection Analysis IV – Lighting System Analysis
 - Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

- Project Structure Changes:
 - Third-party commissioning agent
 - LEED Consultant

 - Energy Modeler No difference in labor crews
- Additional Costs and Benefits:
 - There aren't necessarily additional costs
 - •LEED provides proof that a building meets initial expectations

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- ■Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth Analysis III – Rainwater Collection
- Analysis IV Lighting System Analysis Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

- Conclusion/Recommendations:
 - Can be implemented without additional costs •Integrative Design Approach
 - •The only major timeline difference is increased paperwork Divided in Responsibility Matrix
 - Some additional entities may be necessary
 - •LEED provides proof that the building was constructed as expected.
 - •Beneficial to all construction projects

Building Overview

- Thesis Theme/Goals
- •MAE Requirements
- •Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical BreadthAnalysis III Rainwater Collection
- Analysis IV Lighting System Analysis
- •Lighting/Electrical Breadth
- Summary/Conclusions
- •Questions

Analysis III – Rainwater Collection

•Goals:

- •Look into the addition of a rainwater collection system for this school
- •Implement a system that is cost friendly, and will not impact the schedule

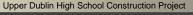
•Initial Observations:

- •This area receives approximately 48" of rain annually
- •Large amount of roof area
- •Large potential for rainwater collection

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth Analysis III – Rainwater Collection
- Analysis IV Lighting System Analysis Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

- Discussion with Owner and CM:
 - •Rainwater collection was not considered during design
 - •This was mainly due to cost and space
 - •There was also a lot done with storm water management and water efficiency
 - •This would have been valuable as a learning tool for students

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects ■ Analysis II – Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection Analysis IV – Lighting System Analysis
- Lighting/Electrical Breadth
- Summary/Conclusions Questions

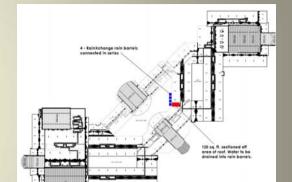

•Rainwater Collection System Attributes:

- Low space requirements Minimal Cost
- Visible Educational

- Solution: •RainXchange Rain Barrel by Aquascape, Inc.

 - •75 gallon capacity Can be combined in series.

 - •\$250 per barrel



- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth Analysis III – Rainwater Collection
- Analysis IV Lighting System Analysis Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

•Implementation:

- •4 barrels can be combined for a 300 gallon capacity
- •Based on an average 4in. rain per month, this requires 120ft² of roof space
- Roof can be sectioned off to funnel water into rain barrel. through guttering
- •Can be installed after building completion
- Located in a visible area

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth Analysis III – Rainwater Collection
- Analysis IV Lighting System Analysis Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

- Conclusions/Recommendations:
 - •Large-scale rainwater collection is not a feasible idea
 - •RainXchange rain barrels are very inexpensive
 - •They can be installed post-construction
 - •They are relatable for the students and is something they can implement in their own homes

Analysis IV – Lighting System Analysis

- Building Overview
- Thesis Theme/Goals
- •MAE Requirements
- -WAL Requirements
- Analysis I LEED on Projects
 Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater CollectionAnalysis IV Lighting System Analysis
- Lighting/Electrical BreadthSummary/Conclusions
- •Questions

•Goals:

- •Research the components of the main classroom lighting system
- •Compare these technologies to other industry lighting systems
- •Compare efficiency between this lighting system and typical lighting systems

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth Analysis III – Rainwater Collection
- Analysis IV Lighting System Analysis
- Lighting/Electrical Breadth Summary/Conclusions
- Questions

Analysis IV – Lighting System Analysis

- Lighting System Components:
 - Occupancy and Daylight Sensors
 - High-output T5 Fluorescent lighting
 - •Combination will decrease lighting loads by up to 80% compared to standard switching controls
- •T8 versus T5 Fluorescent:
 - •HOT5 cost 3-4 times the price of a T8 fluorescent bulb
 - •HOT5 is only slightly more efficient than a T8
 - •Both have a 20,000 hour lifecycle

Lamp Type	Color Rendering Index (CRI)	Efficacy (lumens/watt)	Co-efficiency of Utilization (CU)
T12	62	78	0.46
18	85	92	0.76
TE	0.0	100	0.00

Analysis IV – Lighting System Analysis

- Building Overview
- Thesis Theme/Goals
- •MAE Requirements
- •Analysis I LEED on Projects
- •Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater CollectionAnalysis IV Lighting System Analysis
- Lighting/Electrical BreadthSummary/Conclusions
- •Questions

Added Benefit to HOT5 Fluorescent:

- •Produces much more light than a T8
- •This will reduce the quantity of lights needed per room
- •The value will increase with the size of the project

0 1 1 10

- Conclusions/Recommendations:
 HOT5 costs much more than T8, but makes it up in performance and quantity of light
 - •The combination of elements create a very efficient lighting system

- Building Overview
- Thesis Theme/Goals
- •MAE Requirements
- •Analysis I LEED on Projects
- •Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection
 Analysis IV Lighting System Analysis
- <u>Lighting/Electrical Breadth</u>Summary/Conclusions
- •Summary/C
 •Questions

Lighting/Electrical Breadth

•Goal:

- •To find a comparable replacement for the HOT5 fluorescent in terms of cost, energy efficiency, and performance
- •LED Fluorescent Tube:
 - •50.000 hour lifecycle
 - •Can be used in the same fixture as the fluorescent lamp
 - •Does not require a ballast
- •Consumes much less energy at 12W (compared to 54W)

- Building Overview
- Thesis Theme/Goals
- •MAE Requirements
- •Analysis I LEED on Projects
- •Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection
 Analysis IV Lighting System Analysis
 - Lighting/Electrical Breadth
- Summary/Conclusions
- •Questions

Lighting/Electrical Breadth

- •Easy Installation:
 - •Requires bypass of the ballast
 - •Simple wiring can be performed by building maintenance
- •Disadvantages:
 - •8-10 times more expensive than HOT5 (\$75 each)
 - •Much less light output (900 lumens compared to 5,000 for HOT5)

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects
- Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection Analysis IV – Lighting System Analysis
 - Lighting/Electrical Breadth
- Summary/Conclusions
- Questions

Lighting/Electrical Breadth

- Load Reduction, Cost, Payback
 - Approx. 117 classrooms
 - •6 fixtures per classroom with 4 lamps per fixture
 - •\$260 per 4-pack of LED Tubes
 - •\$182,500 total initial cost
 - •3.5 year payback

Energy and Cost Savings Comparison				
	Lamp Type	HO T5 Fluorescent	T5 LED Replacement	
1 lamp	Power Consumption (W)	54	12	
	KWH/Year ¹	157.86	35.04	
	\$/Year ²	23.65	5.26	
Classroom (4 lamps per fixture, ≈6 fixtures per room)	KWH/Year	3789	841	
	\$/Year	568	126	
Building (*117 classroom spaces)	KWH/Year	443,271	98,392	
	\$/Year	66,409	14,770	
Total Savings	KWH/Year	(*)	344,879	
	\$/Year	120	51,639	

•Estimated 17 years total service life

Building Overview

- Thesis Theme/Goals
- •MAE Requirements
- •Analysis I LEED on Projects
- •Analysis II Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection
 Analysis IV Lighting System Analysis
- <u>Lighting/Electrical Breadth</u>
- Summary/Conclusions
- •Questions

Lighting/Electrical Breadth

- •Conclusions/Recommendations:
 - •Pros far exceed cons of LED Fluorescent Tubes to HOT5
 - •Initial cost is reasonable, and payback is very quick
 - •Large reduction in energy consumption
 - •Significantly lower light output than a HOT5
 - •This is not suitable as a direct replacement for the existing fixtures

Summary/Conclusions

- Building Overview
- Thesis Theme/Goals
- MAE Requirements
- Analysis I LEED on Projects ■ Analysis II – Geothermal Well System
- Mechanical Breadth
- Analysis III Rainwater Collection Analysis IV – Lighting System Analysis
- Lighting/Electrical Breadth Summary/Conclusions
- Questions

- Main thesis goals were met
- •Sustainability was looked at from the standpoint of a construction manager
- •LEED can be a valuable addition to any project
- •Many sustainable technologies exist, but some still need development

Questions The Upper Dublin School District Owner Michael Pladus - Superintendent of Schools Brenda Jones Bray – Business Administrator Building Overview A.E. Faculty Advisor: Dr. Chris Magent Thesis Theme/Goals MAE Requirements D'Huy Engineering, Inc. Industry Analysis I – LEED on Projects Warren M. Gericke - Senior Project Manager ■ Analysis II – Geothermal Well System Gilbert Architects, Inc. Mechanical Breadth Questions?? Brian Good Analysis III – Rainwater Collection

7 Group

Marcus Sheffer - LEED Consultant

Aramark Technical Services Chris Skalski - Commissioning Agent

Thank you to everyone that helped make this senior thesis possible!

Acknowledgements

Family & Friends

Stephen Kelchaw - Construction Management

Questions

Upper Dublin High School Construction Project

Analysis IV – Lighting System Analysis

Lighting/Electrical Breadth

Summary/Conclusions

Senior Thesis Final Presentation - Slide 24 of 24

4/13/2010